We prove that the known formulae for computing the optimal number of maximally entangled pairs required for entanglement-assisted quantum error-correcting codes (EAQECCs) over the binary field hold for codes over arbitrary finite fields as well. We also give a Gilbert-Varshamov bound for EAQECCs and constructions of EAQECCs coming from punctured self-orthogonal linear codes which are valid for any finite field.
翻译:我们证明,已知计算在二进制字段上缠绕协助量子错误校正码(EAQECCs)所需的最大缠绕对方的最佳数量所需的计算公式,也持有任意限定字段的编码。我们还给Gilbert-Varshamov设定了一个用于EAQECCs的Gilbert-Varshamov 和根据任何有限字段都有效的被刺破的自正反向线性代码建造EAQECs的最佳配方。