This paper considers three inter-related adversarial inference problems involving cognitive radars. We first discuss inverse tracking of the radar to estimate the adversary's estimate of us based on the radar's actions and calibrate the radar's sensing accuracy. Second, using revealed preference from microeconomics, we formulate a non-parametric test to identify if the cognitive radar is a constrained utility maximizer with signal processing constraints. We consider two radar functionalities, namely, beam allocation and waveform design, with respect to which the cognitive radar is assumed to maximize its utility and construct a set-valued estimator for the radar's utility function. Finally, we discuss how to engineer interference at the physical layer level to confuse the radar which forces it to change its transmit waveform. The levels of abstraction range from smart interference design based on Wiener filters (at the pulse/waveform level), inverse Kalman filters at the tracking level and revealed preferences for identifying utility maximization at the systems level.
翻译:本文审议了三个与认知雷达有关的相互对立的推论问题。 我们首先讨论对雷达进行反向跟踪,以便根据雷达的动作来估计对手对我们的估计,并校准雷达的感测准确性。 其次, 我们利用微观经济学显示的偏好, 制定非参数测试, 以确定认知雷达是否是信号处理限制的有限效用最大化。 我们考虑两种雷达功能, 即波形分配和波形设计, 假设认知雷达是为了最大限度地发挥其效用, 并为雷达的功用功能建立一个定值的估测仪。 最后, 我们讨论如何在物理层一级设计干扰, 以混淆迫使它改变其传输波形的雷达。 抽象程度从基于维纳过滤器的智能干扰设计( 脉冲/波形水平) 、 跟踪水平的逆向卡尔曼过滤器, 以及显示在系统一级确定效用最大化的偏好。