The Mermin-Peres magic square is a celebrated example of a system of Boolean linear equations that is not (classically) satisfiable but is satisfiable via linear operators on a Hilbert space of dimension four. A natural question is then, for what kind of problems such a phenomenon occurs? Atserias, Kolaitis, and Severini answered this question for all Boolean Constraint Satisfaction Problems (CSPs): For 0-Valid-SAT, 1-Valid-SAT, 2-SAT, Horn-SAT, and Dual Horn-SAT, classical satisfiability and operator satisfiability is the same and thus there is no gap; for all other Boolean CSPs, these notions differ as there are gaps, i.e., there are unsatisfiable instances that are satisfiable via operators on Hilbert spaces. We generalize their result to CSPs on arbitrary finite domains and give an almost complete classification: First, we show that NP-hard CSPs admit a separation between classical satisfiability and satisfiability via operators on finite- and infinite-dimensional Hilbert spaces. Second, we show that tractable CSPs of bounded width have no satisfiability gaps of any kind. Finally, we show that tractable CSPs of unbounded width can simulate, in a satisfiability-gap-preserving fashion, linear equations over an Abelian group of prime order $p$; for such CSPs, we obtain a separation of classical satisfiability and satisfiability via operators on infinite-dimensional Hilbert spaces. Furthermore, if $p=2$, such CSPs also have gaps separating classical satisfiability and satisfiability via operators on finite- and infinite-dimensional Hilbert spaces.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
11+阅读 · 2021年10月26日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
11+阅读 · 2021年10月26日
Arxiv
31+阅读 · 2021年6月30日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员