We describe the ARKODE library of one-step time integration methods for ordinary differential equation (ODE) initial-value problems (IVPs). In addition to providing standard explicit and diagonally implicit Runge--Kutta methods, ARKODE also supports one-step methods designed to treat additive splittings of the IVP, including implicit-explicit (ImEx) additive Runge--Kutta methods and multirate infinitesimal (MRI) methods. We present the role of ARKODE within the SUNDIALS suite of time integration and nonlinear solver libraries, the core ARKODE infrastructure for utilities common to large classes of one-step methods, as well as its use of ``time stepper'' modules enabling easy incorporation of novel algorithms into the library. Numerical results show example problems of increasing complexity, highlighting the algorithmic flexibility afforded through this infrastructure, and include a larger multiphysics application leveraging multiple algorithmic features from ARKODE and SUNDIALS.
翻译:我们描述了用于普通差异方程式初始值问题(IVPs)的单步时间整合方法的ARKODE图书馆。除了提供标准的直线和对等隐含龙格-库塔方法外,ARKODE还支持旨在处理IVP的累加分解的单步方法,包括隐含(IMEx)的添加式龙格-库塔方法和多分流无限度(MRI)方法。我们介绍了ARKODE在时间整合和非线性求解库的SUNDIALIS套件中所起的作用、用于大型单步方法公用公用设施的核心ARKODE基础设施,以及它使用“时继器”模块使新算法容易融入图书馆的情况。数字结果显示了日益复杂的问题,突出了通过这一基础设施所提供的算法灵活性,包括利用来自ARKODE和SUNDIALS的多种算法特征的更大多物理应用。