In this work, we examine an intelligent reflecting surface (IRS) assisted downlink non-orthogonal multiple access (NOMA) scenario with the aim of maximizing the sum rate of users. The optimization problem at the IRS is quite complicated, and non-convex, since it requires the tuning of the phase shift reflection matrix. Driven by the rising deployment of deep reinforcement learning (DRL) techniques that are capable of coping with solving non-convex optimization problems, we employ DRL to predict and optimally tune the IRS phase shift matrices. Simulation results reveal that IRS assisted NOMA based on our utilized DRL scheme achieves high sum rate compared to OMA based one, and as the transmit power increases, the capability of serving more users increases. Furthermore, results show that imperfect successive interference cancellation (SIC) has a deleterious impact on the data rate of users performing SIC. As the imperfection increases by ten times, the rate decreases by more than 10%.


翻译:在这项工作中,我们研究的是智能反射表面(IRS)协助的非垂直多功能访问(NOMA)下行链路(NOMA)情景,目的是最大限度地提高用户的总和率。IRS的优化问题相当复杂,而且非曲线问题,因为它需要调整阶段转移反射矩阵。由于部署的深度强化学习(DRL)技术不断增多,能够解决非碳化优化问题,我们使用DRL来预测和优化IRS阶段转移矩阵。模拟结果表明,IRS根据我们使用的DRL计划协助NOMA实现的高总和率,与OMA方案相比,随着传输能力的增加,为更多用户服务的能力也有所提高。此外,结果显示,不完善的连续取消(SIC)对从事SIC的用户的数据率产生了有害影响。由于不完善程度增加了十倍,因此该率下降了10%以上。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
已删除
将门创投
7+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月26日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月26日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员