Recommending medications for patients using electronic health records (EHRs) is a crucial data mining task for an intelligent healthcare system. It can assist doctors in making clinical decisions more efficiently. However, the inherent complexity of the EHR data renders it as a challenging task: (1) Multilevel structures: the EHR data typically contains multilevel structures which are closely related with the decision-making pathways, e.g., laboratory results lead to disease diagnoses, and then contribute to the prescribed medications; (2) Multiple sequences interactions: multiple sequences in EHR data are usually closely correlated with each other; (3) Abundant noise: lots of task-unrelated features or noise information within EHR data generally result in suboptimal performance. To tackle the above challenges, we propose a multilevel selective and interactive network (MeSIN) for medication recommendation. Specifically, MeSIN is designed with three components. First, an attentional selective module (ASM) is applied to assign flexible attention scores to different medical codes embeddings by their relevance to the recommended medications in every admission. Second, we incorporate a novel interactive long-short term memory network (InLSTM) to reinforce the interactions of multilevel medical sequences in EHR data with the help of the calibrated memory-augmented cell and an enhanced input gate. Finally, we employ a global selective fusion module (GSFM) to infuse the multi-sourced information embeddings into final patient representations for medications recommendation. To validate our method, extensive experiments have been conducted on a real-world clinical dataset. The results demonstrate a consistent superiority of our framework over several baselines and testify the effectiveness of our proposed approach.


翻译:使用电子健康记录(EHRs)为病人建议药物是智能保健系统的一个关键数据挖掘任务,有助于医生作出更高效的临床决定,但是,EHR数据的内在复杂性使得它成为一项具有挑战性的任务:(1) 多层次结构:EHR数据通常包含与决策途径密切相关的多层次结构,例如实验室结果导致疾病诊断,然后有助于处方药物;(2) 多序列互动:EHR数据中多个序列通常与病人临床数据密切相关;(3) 强烈噪音:EHR数据中大量与任务无关的特征或噪音信息通常导致不优化的性能。为了应对上述挑战,我们建议建立一个多层次选择性和互动网络(MESIN),具体地说,MESIN是设计出与决策途径密切相关的多层次结构结构结构结构结构结构结构,首先,对不同医学代码进行灵活的关注分数,因为它们与推荐的药物框架相关联;(3) 大量噪音噪音:EHR数据中的许多与任务无关的特性或噪音信息信息,在多层次的内存层数据中,我们用一个不断的Ehort-hel-himal Indeal imal imal deal laction a lax the a lax a suild the subild the subild the the subild subildal subildlegaldaldaldaldaldaldaldaldaldaldaldaldaldald lautd lautd lautd lautd lautd the a lautddd routdd routd routd rod rod rod routd routd rodaldaldddd rodddds a routdaldaldaldaldddd rodddddddddddddaldaldaldaldaldaldaldaldaldaldald rod rod rod rod rod rodald rodaldaldaldaldaldaldaldaldaldaldaldaldald rodaldaldaldald

1
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【WSDM2021】多交互注意力网络细粒度特征学习的CTR预测
专知会员服务
25+阅读 · 2020年12月27日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关VIP内容
【WSDM2021】多交互注意力网络细粒度特征学习的CTR预测
专知会员服务
25+阅读 · 2020年12月27日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员