Comparing competing mathematical models of complex natural processes is a shared goal among many branches of science. The Bayesian probabilistic framework offers a principled way to perform model comparison and extract useful metrics for guiding decisions. However, many interesting models are intractable with standard Bayesian methods, as they lack a closed-form likelihood function or the likelihood is computationally too expensive to evaluate. With this work, we propose a novel method for performing Bayesian model comparison using specialized deep learning architectures. Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset. Moreover, it involves no hand-crafted summary statistics of the data and is designed to amortize the cost of simulation over multiple models and observable datasets. This makes the method applicable in scenarios where model fit needs to be assessed for a large number of datasets, so that per-dataset inference is practically infeasible.Finally, we propose a novel way to measure epistemic uncertainty in model comparison problems. We demonstrate the utility of our method on toy examples and simulated data from non-trivial models from cognitive science and single-cell neuroscience. We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work. We argue that our framework can enhance and enrich model-based analysis and inference in many fields dealing with computational models of natural processes. We further argue that the proposed measure of epistemic uncertainty provides a unique proxy to quantify absolute evidence even in a framework which assumes that the true data-generating model is within a finite set of candidate models.
翻译:比较复杂的自然过程的相互竞争的数学模型是许多科学分支的一个共同目标。 巴伊西亚概率框架提供了一种原则性的方法,用于进行模型比较和提取有用的指标以指导决策。然而,许多有趣的模型与标准的巴伊西亚方法不相适应,因为它们缺乏封闭式的概率功能,或者在计算上可能过于昂贵,难以评估。有了这项工作,我们提出了使用专门的深层次学习结构进行巴伊西亚模型比较的新颖方法。我们的方法纯粹是模拟为基础的,绕过了明显地将所有替代模型与每个观察到的数据集相匹配的步骤。此外,它不包含数据的任何手动汇总统计,而是用来对多个模型和可观测数据集的模拟成本进行摊合。这种方法适用于模型适合大量数据集评估的情景,因此,每个数据集的推论几乎是不可行的。 最后,我们提出了一种新颖的方法,用以衡量模型比较问题中的许多隐含的不确定性。我们展示了从非三角模型和模拟模型中模拟数据,从非三角模型和可观察的数据集中进行模拟,我们从一个精度的精确度分析,我们从一个精度模型和精确的精确度分析中,从一个精度分析中,我们从一个精度的精确的精确的精确的计算模型,可以评估了我们的精确的模型和精确的计算结果,我们从一个精度分析中,从一个精度模型,从一个精度中,从一个精度学和精度模型的推了一个精度模型的推了一个精度模型,从一个精度模型的推了。