Formulations of graph algorithms using sparse linear algebra have yielded highly scalable distributed algorithms for problems such as connectivity and shortest path computation. We develop the first formulation of the Awerbuch-Shiloach parallel minimum spanning forest (MSF) algorithm using linear algebra primitives. We introduce a multilinear kernel that operates on an adjacency matrix and two vectors. This kernel updates graph vertices by simultaneously using information from both adjacent edges and vertices. In addition, we explore optimizations to accelerate the shortcutting step in the Awerbuch-Shiloach algorithm. We implement this MSF algorithm with Cyclops, a distributed-memory library for generalized sparse tensor algebra. We analyze the parallel scalability of our implementation on the Stampede2 supercomputer.
翻译:使用稀薄线性代数的图形算法配方已经产生了高度可缩放的分布式算法,以解决连接和最短路径计算等问题。 我们开发了使用线性代数原始元素的Awerbuch-Shiloach平行最低覆盖森林算法(MSF)的第一个配方。 我们引入了多线性内核,该内核在相邻矩阵和两个矢量上运行。 这个内核通过同时使用来自相邻边缘和脊椎的信息来更新图形顶部。 此外, 我们还探索了优化,以加速Awerbuch-Shiloach算法中的短切步骤。 我们用Cyclops(一个用于普遍稀散式高温和高位数的分布式模样库)来实施这种MSF算法。 我们分析了我们在Sprampede2超级计算机上的平行可扩展性。