We study elliptical distributions in locally convex vector spaces, and determine conditions when they can or cannot be used to satisfy differential privacy (DP). A requisite condition for a sanitized statistical summary to satisfy DP is that the corresponding privacy mechanism must induce equivalent measures for all possible input databases. We show that elliptical distributions with the same dispersion operator, $C$, are equivalent if the difference of their means lies in the Cameron-Martin space of $C$. In the case of releasing finite-dimensional projections using elliptical perturbations, we show that the privacy parameter $\ep$ can be computed in terms of a one-dimensional maximization problem. We apply this result to consider multivariate Laplace, $t$, Gaussian, and $K$-norm noise. Surprisingly, we show that the multivariate Laplace noise does not achieve $\ep$-DP in any dimension greater than one. Finally, we show that when the dimension of the space is infinite, no elliptical distribution can be used to give $\ep$-DP; only $(\epsilon,\delta)$-DP is possible.


翻译:我们研究本地锥体矢量空间的椭圆分布,确定它们能够或不能用于满足不同隐私(DP)的条件。 清洁统计摘要满足DP的一个必要条件是,相应的隐私机制必须为所有可能的输入数据库引入等量措施。 我们显示,如果其手段的差别在于卡梅伦-马丁空间$C美元,则与同一分散操作器($C美元)的椭圆分布相当。 在使用椭圆扰动释放有限维度预测的情况下,我们显示,可以用一维最大化问题来计算隐私参数$/ep$。我们应用这一结果来考虑多变拉普尔、$t$、Gaussian和$K-noum噪音。令人惊讶的是,我们显示,多变拉普尔噪音在任何比一维都大于1美元的范围内都达不到$\ep-DP美元。 最后,我们显示,当空间的维度是无限的时,不能使用螺旋分布来提供$ep-DP美元; 只有$\epslon, 可能使用$-DP。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
最佳实践:阿里巴巴数据中台
AliData
26+阅读 · 2019年7月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月29日
Privacy Budget Scheduling
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月26日
Arxiv
0+阅读 · 2021年6月26日
Arxiv
0+阅读 · 2021年6月24日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
最佳实践:阿里巴巴数据中台
AliData
26+阅读 · 2019年7月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员