Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap estimators. We consider bagging for inference from noisy or incomplete measurements on a collection of interacting stochastic dynamic systems. Each system is called a unit, and each unit is associated with a spatial location. A motivating example arises in epidemiology, where each unit is a city: the majority of transmission occurs within a city, with smaller yet epidemiologically important interactions arising from disease transmission between cities. Monte Carlo filtering methods used for inference on nonlinear non-Gaussian systems can suffer from a curse of dimensionality as the number of units increases. We introduce bagged filter (BF) methodology which combines an ensemble of Monte Carlo filters, using spatiotemporally localized weights to select successful filters at each unit and time. We obtain conditions under which likelihood evaluation using a BF algorithm can beat a curse of dimensionality, and we demonstrate applicability even when these conditions do not hold. BF can out-perform an ensemble Kalman filter on a coupled population dynamics model describing infectious disease transmission. A block particle filter also performs well on this task, though the bagged filter respects smoothness and conservation laws that a block particle filter can violate.
翻译:拖动( 套装) ( 套装( 套装 套装 套装 ) 包括 一组 靴子 测距器 。 我们考虑从对交互式随机动态系统集合的吵杂或不完整测量中, 套装推断出 。 每个系统都称为一个单元, 每个单元都与空间位置相关。 流行病学中出现一个积极的例子, 每个单元都是一个城市: 大部分传播发生在城市, 城市之间的疾病传播会产生较小但具有流行病学重要性的相互作用。 蒙特卡洛过滤用于非线性非加西安系统的推论方法, 随着单位数量的增加, 可能会受到维度的诅咒。 我们引入包装过滤器( BF) 方法, 将蒙特卡洛过滤器的组合组合组合组合起来, 并且每个单元和时间都与空间相连接。 我们得到一些条件, 在这种条件下, 使用一种BF 算法的概率评价可以击败维度的诅咒, 我们证明即使在这些条件不坚固的情况下, 我们也可以使用这些条件 。 BF 可以超越一个包含 Kalman 的 Kalman 过滤器, 在一个连接的人口动态过滤器上, 也违反了一个测量 系统 系统 。