Even before the start of the COVID-19 pandemic, bus ridership in the United States attained its lowest level since 1973. If transit agencies hope to reverse this trend, they must understand how their service allocation policies affect ridership. This paper is among the first to model ridership trends on a hyper-local level over time. A Poisson fixed-effects model is developed to evaluate the ridership elasticity to frequency using passenger count data from Portland, Miami, Minneapolis/St-Paul, and Atlanta between 2012 and 2018. In every agency, ridership is found to be elastic to frequency when observing the variation between individual route-segments at one point in time. In other words, the most frequent routes are already the most productive. When observing the variation within each route-segment over time, however, ridership is inelastic; each additional vehicle-trip is expected to generate less ridership than the average bus already on the route. In three of the four agencies, the elasticity is a decreasing function of prior frequency, meaning that low-frequency routes are the most sensitive to frequency change. This paper can help transit agencies anticipate the marginal effect of shifting service throughout the network. As the quality and availability of passenger count data improve, this paper can serve as the methodological basis to explore the dynamics of bus ridership.


翻译:甚至在COVID-19大流行开始之前,美国公共汽车骑手就达到了1973年以来的最低水平。如果过境机构希望扭转这一趋势,它们必须了解其服务分配政策如何影响骑手。本文是最早在超地方一级模拟骑手趋势的第一批文件之一。Poisson固定效应模型用来利用来自Portland、迈阿密、Minneapolis/St-Paul和亚特兰大的乘客计票数据评估骑手对频率的弹性。2012年至2018年之间,美国公共汽车骑手达到了最低水平。在每个机构,在观察单个路段之间的差异时,驾驶员被认为具有弹性到频率的频率。换句话说,最频繁的路线已经是最具生产力的。在观察每个路段的变异时,骑手是无弹性的;预计每增加一辆汽车的车轮车会产生比在这条路线上的平均车轮车更低的骑手。在四个机构中的3个机构,在观察之前的频率上发现骑手的弹性是频率越来越弱的功能,这意味着低频路段路段的频率是最具有最敏感的频率的路线,因此可以改进整个运输结构的运输结构。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
41+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年2月24日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员