The purpose of this paper is to give an overview of the time series forecasting problem based on similarity of trajectories. Various methodologies are introduced and studied, and detailed discussions on hyperparameter optimization, outlier handling and distance measures are provided. The suggested new approaches involve variations in both the selection of similar trajectories and assembling the candidate forecasts. After forming a general framework, an experimental study is conducted to compare the methods that use similar trajectories along with some other standard models (such as ARIMA and Random Forest) from the literature. Lastly, the forecasting setting is extended to interval forecasts, and the prediction intervals resulting from the similar trajectories approach are compared with the existing models from the literature, such as historical simulation and quantile regression. Throughout the paper, the experimentations and comparisons are conducted via the time series of traffic flow from the California PEMS dataset.
翻译:暂无翻译