Depending on energy sources and demand, the carbon intensity of the public power grid fluctuates over time. Exploiting this variability is an important factor in reducing the emissions caused by data centers. However, regional differences in the availability of low-carbon energy sources make it hard to provide general best practices for when to consume electricity. Moreover, existing research in this domain focuses mostly on carbon-aware workload migration across geo-distributed data centers, or addresses demand response purely from the perspective of power grid stability and costs. In this paper, we examine the potential impact of shifting computational workloads towards times where the energy supply is expected to be less carbon-intensive. To this end, we identify characteristics of delay-tolerant workloads and analyze the potential for temporal workload shifting in Germany, Great Britain, France, and California over the year 2020. Furthermore, we experimentally evaluate two workload shifting scenarios in a simulation to investigate the influence of time constraints, scheduling strategies, and the accuracy of carbon intensity forecasts. To accelerate research in the domain of carbon-aware computing and to support the evaluation of novel scheduling algorithms, our simulation framework and datasets are publicly available.
翻译:视能源来源和需求而定,公共电网的碳密度随时间变化。利用这一变异性是减少数据中心排放的一个重要因素。然而,在低碳能源供应方面存在的区域差异使得很难为何时消费电力提供一般的最佳做法。此外,这一领域现有的研究主要侧重于跨地理分布数据中心的碳意识工作量迁移,或纯粹从电网稳定性和成本的角度处理需求反应问题。我们在本文件中审查了将计算工作量转向预计能源供应碳密集程度较低的时间的潜在影响。为此,我们查明了延迟耐力工作量的特点,并分析了德国、大不列颠、法国和加利福尼亚2020年时间工作量转移的可能性。此外,我们实验性地评估了两种工作量变化情景,以模拟方式调查时间限制、时间安排战略和碳密度预测的准确性的影响。加快碳意识计算领域的研究并支持对新算法的评估,我们的模拟框架和数据集是公开的。