We develop a theory of evolutionary spectra for heteroskedasticity and autocorrelation robust (HAR) inference when the data may not satisfy second-order stationarity. Nonstationarity is a common feature of economic time series which may arise either from parameter variation or model misspecification. In such a context, the theories that support HAR inference are either not applicable or do not provide accurate approximations. HAR tests standardized by existing long-run variance estimators then may display size distortions and little or no power. This issue can be more severe for methods that use long bandwidths (i.e., fixed-b HAR tests). We introduce a class of nonstationary processes that have a time-varying spectral representation which evolves continuously except at a finite number of time points. We present an extension of the classical heteroskedasticity and autocorrelation consistent (HAC) estimators that applies two smoothing procedures. One is over the lagged autocovariances, akin to classical HAC estimators, and the other is over time. The latter element is important to flexibly account for nonstationarity. We name them double kernel HAC (DK-HAC) estimators. We show the consistency of the estimators and obtain an optimal DK-HAC estimator under the mean squared error (MSE) criterion. Overall, HAR tests standardized by the proposed DK-HAC estimators are competitive with fixed-b HAR tests, when the latter work well, with regards to size control even when there is strong dependence. Notably, in those empirically relevant situations in which previous HAR tests are undersized and have little or no power, the DK-HAC estimator leads to tests that have good size and power.


翻译:我们开发了一种进化光谱理论, 用于在数据无法满足二阶稳定状态时, 进化光谱强度( HAR) 推断数据可能无法满足二阶稳定状态时, 进化光谱强度( HAR) 。 不常态是经济时间序列的一个常见特征, 可能来自参数变异或模型偏差。 在这样的背景下, 支持 HAR 推断的理论要么不适用, 或者没有提供准确的近似值。 由现有的长期差异估测器标准化的HAR 测试, 可能显示大小扭曲, 几乎没有或没有权力。 对于使用长带( 即固定的 HAR 测试) 的方法, 这个问题可能更为严重( 固定的 HAR 测试) 。 我们引入了一个非固定的光谱序列进程, 后KAR 标准下, 运行的光量测试是动态的不固定的 。 在 WeARC 标准下, 测试是固定的。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
专知会员服务
139+阅读 · 2020年5月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
7+阅读 · 2020年10月9日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年4月26日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
专知会员服务
139+阅读 · 2020年5月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员