Traditional symbolic reasoning engines, while attractive for their precision and explicability, have a few major drawbacks: the use of brittle inference procedures that rely on exact matching/unification of logical terms, an inability to deal with uncertainty, and the need for a precompiled rule-base of knowledge (the "knowledge acquisition" problem). These issues are particularly severe for the Natural Language Understanding (NLU) task, where we often use implicit background knowledge to understand and reason about text, resort to imperfect/fuzzy alignment of concepts and relations during reasoning, and constantly deal with ambiguity in representations. To address these issues, we devise a novel FOL-based reasoner, called Braid, that supports probabilistic rules, and uses the notion of custom unification functions and dynamic rule generation to overcome the brittle matching and knowledge-gap problem prevalent in traditional reasoners. In this paper, we describe the reasoning algorithms used in Braid-BC (the backchaining component of Braid), and their implementation in a distributed task-based framework that builds proof/explanation graphs for an input query in a highly scalable manner. We use a simple QA example from a children's story to motivate Braid-BC's design and explain how the various components work together to produce a coherent logical explanation.


翻译:传统的象征性推理引擎虽然对其精确性和可复制性具有吸引力,但有一些重大缺点:使用依赖逻辑术语精确匹配/统一、无法应对不确定性和需要事先完善规则基础知识(“知识获取”问题)的粗略推论程序;这些问题对自然语言理解(NLU)任务特别严重,我们常常使用隐含的背景知识来理解和理解文字,在推理过程中采用概念和关系不完善/模糊的对齐,并不断处理表述中的模糊性。为了解决这些问题,我们设计了一个新型的基于FOL的理性说明器,称为Braid,它支持概率性规则,并使用习惯统一功能和动态规则生成的概念来克服传统解释者普遍存在的brittle匹配和知识差距问题。在本文中,我们描述了布拉德-布拉德(布拉德的后锁部分)所使用的推论算法,以及在一个分布式的任务框架中实施这些算法,这个框架建立证据/外推图,用于以高度清晰的布拉德式输入查询。我们用一个简单、逻辑化的方法解释儿童如何从一个简单的设计过程到一个简单的例子。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年1月18日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
66+阅读 · 2020年7月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员