Image and shape editing are ubiquitous among digital artworks. Graphics algorithms facilitate artists and designers to achieve desired editing intents without going through manually tedious retouching. In the recent advance of machine learning, artists' editing intents can even be driven by text, using a variety of well-trained neural networks. They have seen to be receiving an extensive success on such as generating photorealistic images, artworks and human poses, stylizing meshes from text, or auto-completion given image and shape priors. In this short survey, we provide an overview over 50 papers on state-of-the-art (text-guided) image-and-shape generation techniques. We start with an overview on recent editing algorithms in the introduction. Then, we provide a comprehensive review on text-guided editing techniques for 2D and 3D independently, where each of its sub-section begins with a brief background introduction. We also contextualize editing algorithms under recent implicit neural representations. Finally, we conclude the survey with the discussion over existing methods and potential research ideas.


翻译:图像和形状编辑在数字艺术作品中十分普遍。图形算法激励着艺术家和设计师,以达到所需的编辑目的,而不必经历手动繁琐的修饰过程。在机器学习的最新进展中,艺术家的编辑意图甚至可以通过文本驱动,使用各种已经训练良好的神经网络。它们在生成照片级图像、艺术品和人体姿势、从文本中进行网格样式化或给出图像和形状先验信息的自动完成等方面得到了广泛的成功。在本短篇综述中,我们概述了50篇关于最先进的(文本引导的)图像和形状生成技术的论文。我们从简介中对最近的编辑算法进行概述。然后,我们分别为2D和3D提供了全面的文本引导编辑技术综述,其中每个子部分都以简要的背景介绍开头。我们还将编辑算法置于最近的隐式神经表示下进行了上下文化。最后,我们通过讨论现有的方法和可能的研究思路来总结综述。

1
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2022年10月27日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
16+阅读 · 2021年1月27日
An Attentive Survey of Attention Models
Arxiv
44+阅读 · 2020年12月15日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关论文
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员