Neural Networks are used today in numerous security- and safety-relevant domains and are, as such, a popular target of attacks that subvert their classification capabilities, by manipulating the network parameters. Prior work has introduced sensitive samples -- inputs highly sensitive to parameter changes -- to detect such manipulations, and proposed a gradient ascent-based approach to compute them. In this paper we offer an alternative, using symbolic constraint solvers. We model the network and a formal specification of a sensitive sample in the language of the solver and ask for a solution. This approach supports a rich class of queries, corresponding, for instance, to the presence of certain types of attacks. Unlike earlier techniques, our approach does not depend on convex search domains, or on the suitability of a starting point for the search. We address the performance limitations of constraint solvers by partitioning the search space for the solver, and exploring the partitions according to a balanced schedule that still retains completeness of the search. We demonstrate the impact of the use of solvers in terms of functionality and search efficiency, using a case study for the detection of Trojan attacks on Neural Networks.
翻译:今天,神经网络被用于许多与安保和安全有关的领域,因此,通过操纵网络参数,成为破坏其分类能力的受欢迎的攻击目标,从而破坏其分类能力。先前的工作引入了敏感样本 -- -- 输入对参数变化高度敏感的投入 -- -- 来检测这些操纵,并提出了一种基于梯度的增益法来计算这些操作。在本文中,我们提供了一个替代方法,使用象征性的制约解答器。我们用解决问题者的语言模拟网络和敏感样本的正式规格,并要求找到解决办法。这种方法支持大量查询,例如与某些类型的攻击相对应的查询。与早先的技术不同,我们的方法并不取决于convex搜索领域,也不取决于搜索起点的适宜性。我们通过对解决问题者的搜索空间进行分割,并根据仍保持搜索完整性的平衡时间表探索隔断区。我们通过对发现Trojan袭击神经网络的案例研究,展示了使用解决者在功能和搜索效率方面的影响。