Detection of Out-of-Distribution (OOD) samples in real time is a crucial safety check for deployment of machine learning models in the medical field. Despite a growing number of uncertainty quantification techniques, there is a lack of evaluation guidelines on how to select OOD detection methods in practice. This gap impedes implementation of OOD detection methods for real-world applications. Here, we propose a series of practical considerations and tests to choose the best OOD detector for a specific medical dataset. These guidelines are illustrated on a real-life use case of Electronic Health Records (EHR). Our results can serve as a guide for implementation of OOD detection methods in clinical practice, mitigating risks associated with the use of machine learning models in healthcare.
翻译:实时检测传播外(OOD)样本是医疗领域安装机器学习模型的关键安全检查。尽管数量不断增加的不确定性量化技术,但在实践中缺乏关于如何选择OOD检测方法的评价准则。这一差距妨碍了实际应用OOOD检测方法的实施。在这里,我们提出了一系列实际考虑和测试,为特定医疗数据集选择最佳OOD检测器。这些指南以电子健康记录(EHR)的实时应用案例为例。我们的结果可以作为临床实践实施OOD检测方法的指南,减轻在保健中使用机器学习模型的风险。