In this article, we propose the outcome-adjusted balance measure to perform model selection for the generalized propensity score (GPS), which serves as an essential component in estimation of the pairwise average treatment effects (ATEs) in observational studies with more than two treatment levels. The primary goal of the balance measure is to identify the GPS model specification such that the resulting ATE estimator is consistent and efficient. Following recent empirical and theoretical evidence, we establish that the optimal GPS model should only include covariates related to the outcomes. Given a collection of candidate GPS models, the outcome-adjusted balance measure imputes all baseline covariates by matching on each candidate model, and selects the model that minimizes a weighted sum of absolute mean differences between the imputed and original values of the covariates. The weights are defined to leverage the covariate-outcome relationship, so that GPS models without optimal variable selection are penalized. Under appropriate assumptions, we show that the outcome-adjusted balance measure consistently selects the optimal GPS model, so that the resulting GPS matching estimator is asymptotically normal and efficient. We compare its finite sample performance with existing measures in a simulation study. We illustrate an application of the proposed methodology in the analysis of the Tutoring data.


翻译:在本条中,我们提出成果调整平衡措施,以对通用偏差评分(GPS)进行示范性选择,作为估算具有两个以上处理水平的观测研究中对称平均处理效果(ATE)的一个基本组成部分;平衡措施的主要目标是确定全球定位系统模型规格,使由此得出的ATE估计值具有一致性和效率;根据最近的经验和理论证据,我们确定最佳全球定位系统模型只应包括与结果有关的共变数;根据候选全球定位系统模型的收集,结果调整平衡措施通过对每种候选模型进行匹配,使所有基线差数相互抵消,并选择一种模型,最大限度地减少估算值与原共差值之间绝对平均差的加权总和;确定加权是为了利用共变数关系,从而惩罚没有最佳变量选择的全球定位系统模型;根据适当的假设,我们表明,经成果调整的平衡措施始终选择最佳的全球定位系统模型,因此,通过对每种候选模型进行匹配的全球定位系统估计,使所有基准差数相互抵消,并选择了所有基准差数,同时选择一种模型,将估算值的绝对平均值的加权总和绝对平均数之和现行数据模拟研究中的定数分析结果。我们比较了现行分析方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Sample Efficient Model Evaluation
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员