In [arXiv:1906.10951 (forthcoming on Advances in Applied Probability),arXiv:2011.05933 (published on PLOS ONE)] the authors introduce, study and apply a new variant of the Eggenberger-Polya urn, called the "Rescaled" Polya urn, which, for a suitable choice of the model parameters, is characterized by the following features: (i) a "local" reinforcement, i.e. a reinforcement mechanism mainly based on the last observations, (ii) a random persistent fluctuation of the predictive mean, and (iii) a long-term almost sure convergence of the empirical mean to a deterministic limit, together with a chi-squared goodness of fit result for the limit probabilities. In this work, motivated by some empirical evidences in [arXiv:2011.05933 (published on PLOS ONE)], we show that the multidimensional Wright-Fisher diffusion with mutation can be obtained as a suitable limit of the predictive means associated to a family of rescaled Polya urns


翻译:在[arXiv:1906.10951(即将在应用概率方面的进展上发表),arXiv:2011.05933(公布于SPLOS 中,作者介绍、研究和应用称为“重新标度”Polica URn的Eggenberger-Polya urn(称为“重新标定”Polya URN)的新变体,该变体的特征是: (一)“局部”强化,即主要基于最后观察结果的强化机制,arXiv:1906.10951(即将公布于应用概率的进步上),arXiv:2011.05933(公布于SPLOS one)中的一些经验性证据,我们表明,与突变相关的多层面 Wright-Fisher扩散可以作为与重新标定的聚氨有关的预测手段的适当限度获得。

0
下载
关闭预览

相关内容

再缩放是一个类别不平衡学习的一个基本策略。当训练集中正、反例数据不均等时,令m+表示正例数,m-表示反例数,并且需对预测值进行缩放调整。
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
63+阅读 · 2021年8月20日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【干货】Deep Learning with Python 终于等到你!
量化投资与机器学习
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【干货】Deep Learning with Python 终于等到你!
量化投资与机器学习
11+阅读 · 2017年12月5日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员