We consider polyregular functions, which are certain string-to-string functions that have polynomial output size. We prove that a polyregular function has output size $\mathcal O(n^k)$ if and only if it can be defined by an MSO interpretation of dimension $k$, i.e. a string-to-string transformation where every output position is interpreted, using monadic second-order logic MSO, in some $k$-tuple of input positions. We also show that this characterization does not extend to pebble transducers, another model for describing polyregular functions: we show that for every $k \in \{1,2,\ldots\}$ there is a polyregular function of quadratic output size which needs at least $k$ pebbles to be computed.
翻译:我们考虑的是多正函数,这些函数是某些具有多元输出大小的字符串到字符串函数。我们证明一个多正函数的输出大小为$\mathcal O(n ⁇ k)$,如果而且只有在能够用对维度的MSO解释 $k$(即用单调二阶逻辑MSO来解释每个输出位置的字符串到字符串转换)来定义时,我们才会考虑这些函数。我们还表明,这种定性不延伸至用于描述多正则函数的另一种模型,即:我们显示,对于每1,2,\ldots $(美元)来说,每1,2,\ldoldots $(美元)就有一个对四方形输出大小进行解释的多正函数,需要至少计算到 $k$(美元) ebbbles。