Much of what we do as humans is engage socially with other agents, a skill that robots must also eventually possess. We demonstrate that a rich theory of social interactions originating from microsociology and economics can be formalized by extending a nested MDP where agents reason about arbitrary functions of each other's hidden rewards. This extended Social MDP allows us to encode the five basic interactions that underlie microsociology: cooperation, conflict, coercion, competition, and exchange. The result is a robotic agent capable of executing social interactions zero-shot in new environments; like humans it can engage socially in novel ways even without a single example of that social interaction. Moreover, the judgments of these Social MDPs align closely with those of humans when considering which social interaction is taking place in an environment. This method both sheds light on the nature of social interactions, by providing concrete mathematical definitions, and brings rich social interactions into a mathematical framework that has proven to be natural for robotics, MDPs.
翻译:作为人类,我们所做的大部分工作都是与其他代理人进行社会接触,机器人最终也必须拥有这种技能。我们证明,通过扩大嵌套的MDP,可以正式确立源自微观社会学和经济的社会互动的丰富理论,其中代理商对彼此的隐含报酬的任意功能有一定的理由。这种扩大的社会 MDP使我们得以将作为微观社会学基础的五种基本互动结合起来:合作、冲突、胁迫、竞争和交流。其结果是机器人的代理商能够在新的环境中实现社会互动零弹;与人类一样,它可以以新颖的方式进行社会互动,即使没有这种社会互动的单一例子。此外,这些社会 MDP的判断在考虑哪种社会互动是在环境进行时与人类的判断紧密一致。这种方法通过提供具体的数学定义,将丰富的社会互动带入一个已证明对机器人、MDP来说是自然的数学框架。