Multilingual language models achieve impressive zero-shot accuracies in many languages in complex tasks such as Natural Language Inference (NLI). Examples in NLI (and equivalent complex tasks) often pertain to various types of sub-tasks, requiring different kinds of reasoning. Certain types of reasoning have proven to be more difficult to learn in a monolingual context, and in the crosslingual context, similar observations may shed light on zero-shot transfer efficiency and few-shot sample selection. Hence, to investigate the effects of types of reasoning on transfer performance, we propose a category-annotated multilingual NLI dataset and discuss the challenges to scale monolingual annotations to multiple languages. We statistically observe interesting effects that the confluence of reasoning types and language similarities have on transfer performance.
翻译:多种语文模式在诸如自然语言推论等复杂任务中,在许多语言中实现了令人印象深刻的零点理解,例如,自然语言推论(NLI)中的例子(和相当的复杂任务)往往涉及各类子任务,需要不同的推理。某些类型的推理证明在单一语言背景下更难学习,在跨语言背景下,类似的观察可以揭示零点转移效率和少量抽样选择。因此,为了调查各种推理对转让绩效的影响,我们建议了一个附加说明的多语种国家引论数据集,并讨论将单一语言说明扩大到多种语言的挑战。我们从统计上观察到,推理类型和语言相似性对转让绩效的融合具有有趣的影响。