In this paper, we present our methods for the MediaEval 2020 Flood Related Multimedia task, which aims to analyze and combine textual and visual content from social media for the detection of real-world flooding events. The task mainly focuses on identifying floods related tweets relevant to a specific area. We propose several schemes to address the challenge. For text-based flood events detection, we use three different methods, relying on Bog of Words (BOW) and an Italian Version of Bert individually and in combination, achieving an F1-score of 0.77%, 0.68%, and 0.70% on the development set, respectively. For the visual analysis, we rely on features extracted via multiple state-of-the-art deep models pre-trained on ImageNet. The extracted features are then used to train multiple individual classifiers whose scores are then combined in a late fusion manner achieving an F1-score of 0.75%. For our mandatory multi-modal run, we combine the classification scores obtained with the best textual and visual schemes in a late fusion manner. Overall, better results are obtained with the multimodal scheme achieving an F1-score of 0.80% on the development set.
翻译:在本文中,我们介绍了我们用于MediaEval 2020 Flood 相关多媒体任务的方法,其目的是分析和结合社交媒体的文字和视觉内容,以发现真实世界的洪水事件。任务主要侧重于识别与特定地区相关的洪水相关推特。我们提出了应对挑战的若干计划。对于基于文本的洪水事件探测,我们使用三种不同的方法,依靠文字的图象(Bog of Words)和意大利版的Bert单独和组合,分别达到F1-Score 0.77 % 、 0.68 % 和 0.70 % 的开发数据集。关于视觉分析,我们依靠通过图像网络预先培训的多个最先进的深度模型提取的特征。然后利用这些提取的特征来培训多个个体分类者,这些分类者的分数随后以延迟的组合方式组合在一起,达到0.75 %的F1核心。对于我们强制性的多模式运行,我们以较晚的组合方式将获得的分类分数与最佳文本和视觉计划结合起来。总体而言,我们获得了更好的结果,而多式计划则是在数据集上实现了0.80 %的F1-scorecore 。