In recent years, machine learning methods became increasingly important for a manifold number of applications. However, they often suffer from high computational requirements impairing their efficient use in real-time systems, even when employing dedicated hardware accelerators. Ensemble learning methods are especially suitable for hardware acceleration since they can be constructed from individual learners of low complexity and thus offer large parallelization potential. For classification, the outputs of these learners are typically combined by majority voting, which often represents the bottleneck of a hardware accelerator for ensemble inference. In this work, we present a novel architecture that allows obtaining a majority decision in a number of clock cycles that is logarithmic in the number of inputs. We show, that for the example application of handwritten digit recognition a random forest processing engine employing this majority decision architecture implemented on an FPGA allows the classification of more than seven million images per second.


翻译:近年来,机器学习方法对多种应用越来越重要,然而,它们往往受到高计算要求的影响,损害其在实时系统中的高效使用,即使在使用专用硬件加速器时也是如此。聚合学习方法特别适合硬件加速,因为可以由低复杂性的个别学习者来制造,从而提供巨大的平行潜力。关于分类,这些学习者的产出通常由多数表决组合,这往往代表了硬件加速器的瓶颈,从而产生共通推论。在这项工作中,我们提出了一个新的结构,允许在一些在投入数量上具有对数的时钟周期中获得多数决定。我们表明,举例来说,使用在FPGA上执行的这一多数决定结构的随机森林处理引擎可以对每秒700多万图象进行分类。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2020年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月5日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员