Set prediction is about learning to predict a collection of unordered variables with unknown interrelations. Training such models with set losses imposes the structure of a metric space over sets. We focus on stochastic and underdefined cases, where an incorrectly chosen loss function leads to implausible predictions. Example tasks include conditional point-cloud reconstruction and predicting future states of molecules. In this paper, we propose an alternative to training via set losses by viewing learning as conditional density estimation. Our learning framework fits deep energy-based models and approximates the intractable likelihood with gradient-guided sampling. Furthermore, we propose a stochastically augmented prediction algorithm that enables multiple predictions, reflecting the possible variations in the target set. We empirically demonstrate on a variety of datasets the capability to learn multi-modal densities and produce different plausible predictions. Our approach is competitive with previous set prediction models on standard benchmarks. More importantly, it extends the family of addressable tasks beyond those that have unambiguous predictions.
翻译:设定的预测是学习如何预测一系列具有未知内在关系的未定顺序变量。 以设定损失方式对此类模型进行训练,这要求有一套衡量空间。 我们注重随机和定义不足的情况, 错误选择的损失功能会导致无法令人相信的预测。 示例任务包括有条件的点宽重建和预测分子的未来状态。 在本文中, 我们建议了通过将学习视为有条件的密度估计来通过设定损失进行培训的替代方法。 我们的学习框架适合深厚的基于能源的模型, 并接近以梯度制导取样的难易可能性。 此外, 我们提出了一种能够进行多重预测的、 反映目标集中可能的变化的随机增强的预测算法。 我们从经验上展示了各种数据集学习多模式密度和产生不同合理预测的能力。 我们的方法与先前设定的标准基准预测模型相比是竞争性的。 更重要的是, 我们的方法将可处理的任务的组合扩大到那些有明确预测的范围之外。