Depth induced multivariate medians (multi-dimensional maximum depth estimators) in regression serve as robust alternatives to the traditional least squares and least absolute deviations estimators. The induced median ($\bs{\beta}^*_{RD}$) from regression depth (RD) of Rousseeuw and Hubert (1999) (RH99) is one of the most prevailing estimators in regression. The maximum regression depth median possesses outstanding robustness similar to the univariate location counterpart. Indeed, the %maximum depth estimator induced from $\mbox{RD}$, $\bs{\beta}^*_{RD}$ can, asymptotically, resist up to $33\%$ contamination without breakdown, in contrast to the $0\%$ for the traditional estimators %(i.e. they could break down by a single bad point) (see Van Aelst and Rousseeuw, 2000) (VAR00). The results from VAR00 are pioneering and innovative, yet they are limited to regression symmetric populations and the $\epsilon$-contamination and maximum bias model. With finite fixed sample size practice, the most prevailing measure of robustness for estimators is the finite sample breakdown point (FSBP) (Donoho (1982), Donoho and Huber (1983)). A lower bound (LB) of the FSBP for the $\bs{\beta}^*_{RD}$, which is not sharp, was given in RH99 (in a corollary of a conjecture). An exact FSBP (or even a sharper LB) for the $\bs{\beta}^*_{RD}$ remained open in the last two decades. This article establishes a sharper lower and upper bounds of (and an exact) FSBP for the $\bs{\beta}^*_{RD}$, revealing an intrinsic connection between the regression depth of $\bs{\beta}^*_{RD}$ and its FSBP. This justifies the employment of the $\bs{\beta}^*_{RD}$ as a robust alternative to the traditional estimators and demonstrating the necessity and the merit of using the FSBP in finite sample real practice instead of an asymptotic breakdown value.


翻译:Rousseeuw 和 Hubert (1999年)(RH99) 的回归深度引出多变中值。 最大回归深度中值具有类似于单方方位对应方的超强性。 事实上, 最大深度中值来自$\mbox{RD} 美元、 $\b_Beta{RD} 等传统最强替代方方程和最不绝对偏差。 从表面上看, Rousseeuew 和 Hubert (1999年)(RH99) 的回归深度中值(RDR) (RD) (RMFB} 最大深度中, 最高深度估计值(MFSB) 的深度中位值(RIB) 和最高偏差(FSB) (Van Aelst and Roseeueuew) 的深度中位值(VAR00) 和创新性中位值(RIDRD_RD_RD} 中,这个比例和最高级BFFBS 的深度中,一个基点的基点(FBS) 和最固定的基底的基底的比值(IFBS) 和最下基底的比值(IFFBS) 和最底的基底的基底的底的比值(VA的比值和最底的比) 和最底的比) 和最底的底的基底的比量测量度测量度(VFB)。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年9月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Inhomogeneous Markov Survival Regression Models
Arxiv
0+阅读 · 2021年9月7日
Arxiv
0+阅读 · 2021年9月7日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员