A barrier certificate often serves as an inductive invariant that isolates an unsafe region from the reachable set of states, and hence is widely used in proving safety of hybrid systems possibly over the infinite time horizon. We present a novel condition on barrier certificates, termed the invariant barrier-certificate condition, that witnesses unbounded-time safety of differential dynamical systems. The proposed condition is by far the least conservative one on barrier certificates, and can be shown as the weakest possible one to attain inductive invariance. We show that discharging the invariant barrier-certificate condition -- thereby synthesizing invariant barrier certificates -- can be encoded as solving an optimization problem subject to bilinear matrix inequalities (BMIs). We further propose a synthesis algorithm based on difference-of-convex programming, which approaches a local optimum of the BMI problem via solving a series of convex optimization problems. This algorithm is incorporated in a branch-and-bound framework that searches for the global optimum in a divide-and-conquer fashion. We present a weak completeness result of our method, in the sense that a barrier certificate is guaranteed to be found (under some mild assumptions) whenever there exists an inductive invariant (in the form of a given template) that suffices to certify safety of the system. Experimental results on benchmark examples demonstrate the effectiveness and efficiency of our approach.
翻译:屏障证书往往是一种诱导性的变化,它将不安全的区域与可达到的一组国家隔离开来,因此被广泛用于证明混合系统的安全性,有可能在无限的时间跨度内证明混合系统的安全性。我们对屏障证书提出了一个新的条件,称为不固定的屏障证书条件,即证人不受限制的时间安全性不同动态系统的安全性。所提议的条件远非最保守的关于屏障证书的条件,可被显示为最弱的、最弱的、可以达到适得其反的条件。我们表明,履行不固定的屏障证书条件 -- -- 从而综合不固定的屏障证书 -- -- 可以被编成解决双线矩阵不平等的优化问题的新条件。我们进一步提出基于异口式的屏障证书的综合算法,这种综合算法通过解决一系列 convex 优化问题而接近当地最佳的。这种算法被纳入一个分支和最弱的框架,以分裂和正反向的方式寻找全球最佳的屏障证书。我们的方法的完整性结果是薄弱的,只要存在某种标准性的标准,即保证存在某种标准性的安全性标准。