Max- and average-pooling are the most popular pooling methods for downsampling in convolutional neural networks. In this paper, we compare different pooling methods that generalize both max- and average-pooling. Furthermore, we propose another method based on a smooth approximation of the maximum function and put it into context with related methods. For the comparison, we use a VGG16 image classification network and train it on a large dataset of natural high-resolution images (Google Open Images v5). The results show that none of the more sophisticated methods perform significantly better in this classification task than standard max- or average-pooling.


翻译:最大和平均集合是革命性神经网络中最常用的缩小抽样集合方法。 在本文中, 我们比较了各种一般化最大和平均集合的集合方法。 此外, 我们提出另一种基于最大函数平稳近似的方法, 并将它与相关方法相提并论。 为了比较, 我们使用 VGG16 图像分类网络, 并用大量自然高分辨率图像数据集( Google Open images v.5) 来训练它( Google Open images v.5) 。 结果显示, 在这项分类任务中, 最复杂的方法没有一种比标准最大或平均集合更好的方法 。

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Using Scene Graph Context to Improve Image Generation
Arxiv
8+阅读 · 2018年5月21日
Arxiv
3+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员