We develop formal theories of conversion for Church-style lambda-terms with Pi-types in first-order syntax using one-sorted variables names and Stoughton's multiple substitutions. We then formalize the Pure Type Systems along some fundamental metatheoretic properties: weakening, syntactic validity, closure under alpha-conversion and substitution. Finally, we compare our formalization with others related. The whole development has been machine-checked using the Agda system. Our work demonstrates that the mechanization of dependent type theory by using conventional syntax and without identifying alpha-convertible lambda-terms is feasible.
翻译:我们在使用单类变量名与Stoughton多重替换的一阶语法中,为具有Π类型的Church风格λ项建立了形式化的转换理论。随后,我们基于若干基本元理论性质——弱化规则、句法有效性、α转换与替换封闭性——对纯类型系统进行了形式化。最后,我们将本形式化方法与相关研究进行了比较。全部推导过程均已通过Agda系统完成机器验证。本研究表明:采用传统语法且无需识别α可转换λ项来实现依值类型理论的机械化是可行的。