The complete elliptic integral of the first kind (CEI-1) plays in a significant role in mathematics, physics and engineering. There is no simple formula for its computation, thus numerical algorithms are essential for coping with practical problems involved. The commercial implementations for the numerical solutions, such as the functions ellipticK and EllipticK provided by MATLAB and Mathematica respectively, are based on $\mathcal{K}_{\mathrm{cs}}(m)$ instead of the usual form $K(k)$ such that $m = k^2$ and $\mathcal{K}_{\mathrm{cs}}(k^2) = K(k)$. It is necessary to develop open source implementations for the computation of the CEI-1 in order to avoid potential risks of using commercial software and possible limitations due to the unknown factors. In this paper, the infinite series method, arithmetic-geometric mean (AGM) method, Gauss-Chebyshev method and Gauss-Legendre methods are discussed in details with a top-down strategy. The four key algorithms for computing CEI-1 are designed, verified, validated and tested, which can be utilized in R\& D and be reused properly. Numerical results show that our open source implementations based on $K(k)$ are equivalent to the commercial implementation based on $\mathcal{K}_{\mathrm{cs}}(m)$. The general algorithms for computing orthogonal polynomials developed are significant byproducts in the sense of STEM education and scientific computation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员