In this paper, we propose a pseudo polynomial size LP formulation for finding a payoff vector in the least core of a weighted voting game. Both the number of variables and number of constraints in our formulation are bounded by $\mbox{O}(Wn)$ where $W$ is the total sum of (integer) voting weights and $n$ is the number of players. When we employ our formulation, a commercial LP solver calculates a payoff vector in the least core of practical weighted voting games in a few seconds. We also extend our approach to vector weighted voting games.
翻译:在本文中,我们提出一个假的多元大小 LP 配方, 用于在加权投票游戏的最小核心中找到一个补偿矢量。 我们配方中的变量数量和限制数量都受$\mbox{O}(Wn) 约束, 其中W$是(整数)投票权数的总和, $n是玩家数。 当我们使用我们的配方时, 一个商业的 LP 求方在几秒钟内计算出一个最核心的实际加权投票游戏中的补偿矢量。 我们还扩展了对矢量加权投票游戏的处理方法 。