We study the amplitude-constrained additive white Gaussian noise channel. It is well known that the capacity-achieving input distribution for this channel is discrete and supported on finitely many points. The best known bounds show that the support size of the capacity-achieving distribution is lower-bounded by a term of order $A$ and upper-bounded by a term of order $A^2$, where $A$ denotes the amplitude constraint. It was conjectured in [1] that the linear scaling is optimal. In this work, we establish a new lower bound of order $A\sqrt{\log A}$, improving the known bound and ruling out the conjectured linear scaling. To obtain this result, we quantify the fact that the capacity-achieving output distribution is close to the uniform distribution in the interior of the amplitude constraint. Next, we introduce a wrapping operation that maps the problem to a compact domain and develop a theory of best approximation of the uniform distribution by finite Gaussian mixtures. These approximation bounds are then combined with stability properties of capacity-achieving distributions to yield the final support-size lower bound.


翻译:本文研究幅度受限加性高斯白噪声信道。已知该信道的容量可达输入分布是离散的,且支撑在有限个点上。现有最佳界表明容量可达分布的支撑集规模下界为$A$阶,上界为$A^2$阶,其中$A$表示幅度约束。文献[1]曾猜想线性缩放是最优的。本工作建立了$A\sqrt{\log A}$阶的新下界,改进了已知界并否定了线性缩放的猜想。为获得此结果,我们量化了容量可达输出分布在幅度约束内部接近均匀分布的特性。接着引入将问题映射到紧致域的环绕操作,并发展了用有限高斯混合逼近均匀分布的最佳逼近理论。这些逼近界再与容量可达分布的稳定性相结合,最终导出支撑集规模的下界。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
23+阅读 · 2021年6月22日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员