The prediction of time series is a challenging task relevant in such diverse applications as analyzing financial data, forecasting flow dynamics or understanding biological processes. Especially chaotic time series that depend on a long history pose an exceptionally difficult problem. While machine learning has shown to be a promising approach for predicting such time series, it either demands long training time and much training data when using deep recurrent neural networks. Alternative, when using a reservoir computing approach it comes with high uncertainty and typically a high number of random initializations and extensive hyper-parameter tuning when using a reservoir computing approach. In this paper, we focus on the reservoir computing approach and propose a new mapping of input data into the reservoir's state space. Furthermore, we incorporate this method in two novel network architectures increasing parallelizability, depth and predictive capabilities of the neural network while reducing the dependence on randomness. For the evaluation, we approximate a set of time series from the Mackey-Glass equation, inhabiting non-chaotic as well as chaotic behavior and compare our approaches in regard to their predictive capabilities to echo state networks and gated recurrent units. For the chaotic time series, we observe an error reduction of up to $85.45\%$ and up to $87.90\%$ in contrast to echo state networks and gated recurrent units respectively. Furthermore, we also observe tremendous improvements for non-chaotic time series of up to $99.99\%$ in contrast to existing approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员