Digital Twins have been described as beneficial in many areas, such as virtual commissioning, fault prediction or reconfiguration planning. Equipping Digital Twins with artificial intelligence functionalities can greatly expand those beneficial applications or open up altogether new areas of application, among them cross-phase industrial transfer learning. In the context of machine learning, transfer learning represents a set of approaches that enhance learning new tasks based upon previously acquired knowledge. Here, knowledge is transferred from one lifecycle phase to another in order to reduce the amount of data or time needed to train a machine learning algorithm. Looking at common challenges in developing and deploying industrial machinery with deep learning functionalities, embracing this concept would offer several advantages: Using an intelligent Digital Twin, learning algorithms can be designed, configured and tested in the design phase before the physical system exists and real data can be collected. Once real data becomes available, the algorithms must merely be fine-tuned, significantly speeding up commissioning and reducing the probability of costly modifications. Furthermore, using the Digital Twin's simulation capabilities virtually injecting rare faults in order to train an algorithm's response or using reinforcement learning, e.g. to teach a robot, become practically feasible. This article presents several cross-phase industrial transfer learning use cases utilizing intelligent Digital Twins. A real cyber physical production system consisting of an automated welding machine and an automated guided vehicle equipped with a robot arm is used to illustrate the respective benefits.


翻译:在虚拟调试、故障预测或重组规划等许多领域,数字双胞胎被描述为有益于许多领域,例如虚拟调试、故障预测或重组规划。为具有人工智能功能的数字双胞胎提供设备,可以大大扩展这些有益的应用,或者打开全新的应用领域,其中包括跨阶段工业转移学习学习。在机器学习方面,转移学习代表了一套方法,这些方法加强了基于先前获得的知识的学习新任务。在这里,知识从一个生命周期阶段转移到另一个生命周期阶段,以减少培训机器学习算法所需的数据或时间。研究开发和部署具有深层学习功能的工业机械方面的共同挑战,采纳这一概念将带来若干好处:利用智能数字数字双胞胎,学习算法可以在物理系统存在和收集真实数据之前的设计阶段设计、配置和测试。一旦有了真正的数据,这些算法就只能进行精细调整,大大加快委托工作的速度,降低费用改造的可能性。此外,利用数字双胞胎的模拟能力来训练算法的反应,或使用强化学习,例如,教授机器人,就变得切实可行。这一项算算算算算法可以在设计阶段内设计一套自动自动自动自动转换的机器人,我们使用的双向机器人的机器人学习。这个数字式机器人是使用一个数字式的自动自动自动转换的机器人的机器人系统,用来用来用来进行数字式的自动转换。

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Top
微信扫码咨询专知VIP会员