Rigid shapes should be naturally compared up to rigid motion or isometry, which preserves all inter-point distances. The same rigid shape can be often represented by noisy point clouds of different sizes. Hence the isometry shape recognition problem requires methods that are independent of a cloud size. This paper studies stable-under-noise isometry invariants for the recognition problem stated in the harder form when given clouds can be related by affine or projective transformations. The first contribution is the stability proof for the invariant mergegram, which completely determines a single-linkage dendrogram in general position. The second contribution is the experimental demonstration that the mergegram outperforms other invariants in recognizing isometry classes of point clouds extracted from perturbed shapes in images.
翻译:硬形应该自然地与硬体运动或等离子体比较, 保持所有点间距离。 相同的硬形可以由不同大小的吵闹点云来代表。 因此, 等离子形状识别问题要求采用独立于云体大小的方法。 本文研究稳定不足的等离子体差异, 以较硬的形态表示的识别问题。 当给定的云可以通过亲和或投影转换联系起来时, 第一种贡献是, 恒差合并法的稳定性证明, 它在一般位置上完全决定一个单链条的时空格。 第二贡献是实验性演示, 合并在识别从图像中扰动形状中提取的点云的等离子类别时, 使其他异差变体形成。