Morphological neurons, that is morphological operators such as dilation and erosion with learnable structuring elements, have intrigued researchers for quite some time because of the power these operators bring to the table despite their simplicity. These operators are known to be powerful nonlinear tools, but for a given problem coming up with a sequence of operations and their structuring element is a non-trivial task. So, the existing works have mainly focused on this part of the problem without delving deep into their applicability as generic operators. A few works have tried to utilize morphological neurons as a part of classification (and regression) networks when the input is a feature vector. However, these methods mainly focus on a specific problem, without going into generic theoretical analysis. In this work, we have theoretically analyzed morphological neurons and have shown that these are far more powerful than previously anticipated. Our proposed morphological block, containing dilation and erosion followed by their linear combination, represents a sum of hinge functions. Existing works show that hinge functions perform quite well in classification and regression problems. Two morphological blocks can even approximate any continuous function. However, to facilitate the theoretical analysis that we have done in this paper, we have restricted ourselves to the 1D version of the operators, where the structuring element operates on the whole input. Experimental evaluations also indicate the effectiveness of networks built with morphological neurons, over similarly structured neural networks.


翻译:具有形态学的神经神经, 也就是形态学操作器, 诸如变形和侵蚀, 具有可学习的结构化元素, 在相当长的时间里引起了研究人员的兴趣, 因为这些操作器尽管简单, 却能带来动力。 这些操作器已知是强大的非线性工具, 但对于一个特定的问题, 操作序列和结构元素是一个非三角性的任务。 因此, 现有的工程主要集中于问题的这一部分, 而不深入地研究它们作为通用操作器的适用性。 少数工程试图利用形态性神经元作为分类( 和回归) 网络的一部分, 当输入是特性矢量时, 这些工程试图将形态性神经元作为分类( 和回归) 网络的一部分。 但是, 这些方法主要侧重于一个特定的问题, 而不进行一般的理论分析。 在这项工作中, 我们从理论上分析了形态学神经学神经元, 并且已经显示这些结构学结构学的构造部分, 我们用整个结构学结构化的模型来限制我们 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员