We propose a new method to compare survival data based on Higher Criticism (HC) of P-values obtained from many exact hypergeometric tests. The method can accommodate censorship and is sensitive to moderate differences in some unknown and relatively few time intervals, attaining much better power against such differences than the log-rank test and other tests that are popular under non-proportional hazard alternatives. We demonstrate the usefulness of the HC-based test in detecting rare differences compared to existing tests using simulated data and using actual gene expression data. Additionally, we analyze the asymptotic power of our method under a piece-wise homogeneous exponential decay model with rare and weak departures, describing two groups experiencing failure rates that are usually identical over time except in a few unknown instances in which the second group's failure rate is higher. Under an asymptotic calibration of the model's parameters, the HC-based test's power experiences a phase transition across the plane involving the rarity and intensity parameters that mirrors the phase transition in a two-sample rare and weak normal means setting. In particular, the phase transition curve of our test indicates a larger region in which it is fully powered than the corresponding region of the log-rank test. %The latter attains a phase transition curve that is analogous to a test based on Fisher's combination statistic of the hypergeometric P-values. %To our knowledge, this is the first analysis of a rare and weak signal detection model that involves individually dependent effects in a non-Gaussian setting.
翻译:暂无翻译