Unsupervised domain adaptation (UDA) generally aligns the unlabeled target domain data to the distribution of the source domain to mitigate the distribution shift problem. The standard UDA requires sharing the source data with the target, having potential data privacy leaking risks. To protect the source data's privacy, we first propose to share the source feature distribution instead of the source data. However, sharing only the source feature distribution may still suffer from the membership inference attack who can infer an individual's membership by the black-box access to the source model. To resolve this privacy issue, we further study the under-explored problem of privacy-preserving domain adaptation and propose a method with a novel differential privacy training strategy to protect the source data privacy. We model the source feature distribution by Gaussian Mixture Models (GMMs) under the differential privacy setting and send it to the target client for adaptation. The target client resamples differentially private source features from GMMs and adapts on target data with several state-of-art UDA backbones. With our proposed method, the source data provider could avoid leaking source data privacy during domain adaptation as well as reserve the utility. To evaluate our proposed method's utility and privacy loss, we apply our model on a medical report disease label classification task using two noisy challenging clinical text datasets. The results show that our proposed method can preserve source data's privacy with a minor performance influence on the text classification task.


翻译:不受监督的域适应(UDA) 通常将未贴标签的目标域数据与源域的分布相匹配,以缓解分配变化问题。标准的 UDA 要求与目标共享源数据,并有潜在的数据隐私泄露风险。为了保护源数据的隐私,我们首先提议共享源特性分布,而不是源数据。然而,仅共享源特性分布仍可能受到成员推论攻击的影响,因为成员推论个人成员可以通过黑箱访问源模型来推断个人成员身份。为了解决这一隐私问题,我们进一步研究了隐私保护域适应不足的问题,并提出了一个方法,以新的差异性隐私培训战略与目标共享源数据,以保护源数据隐私。我们用差异性隐私设定来模拟源特性分布,并将其发送给适应目标客户。目标客户对来自GMMS的私人来源特性进行不同的选择,并调整目标数据与若干州级UDA的隐私影响。我们的拟议方法是,源数据提供者可以避免源数据隐私保护领域数据保密性泄露,我们在域适应过程中,将拟议使用的系统保密性数据定位格式用作我们的拟议工具,我们的拟议版本。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月16日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
专知会员服务
40+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
107+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员