We describe cases where real recommender systems were modified in the service of various human values such as diversity, fairness, well-being, time well spent, and factual accuracy. From this we identify the current practice of values engineering: the creation of classifiers from human-created data with value-based labels. This has worked in practice for a variety of issues, but problems are addressed one at a time, and users and other stakeholders have seldom been involved. Instead, we look to AI alignment work for approaches that could learn complex values directly from stakeholders, and identify four major directions: useful measures of alignment, participatory design and operation, interactive value learning, and informed deliberative judgments.


翻译:我们描述的是,在为多样性、公平性、福祉、美好时间和事实准确性等各种人类价值观服务方面,真正的建议系统被修改的案例。我们从中确定当前价值观工程的做法:利用基于价值的标签从人造数据中创建分类器。这在实践中对各种问题发挥了作用,但问题一个一个一个地得到解决,用户和其他利益攸关方很少参与。相反,我们期待AI调整工作能够直接从利益攸关方那里学习复杂的价值观,并确定四个主要方向:调整、参与性设计和操作、互动价值学习和知情的审议判断等有用措施。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
157+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员