In this paper, based on a domain decomposition (DD) method, we shall propose an efficient two-level preconditioned Helmholtz-Jacobi-Davidson (PHJD) method for solving the algebraic eigenvalue problem resulting from the edge element approximation of the Maxwell eigenvalue problem. In order to eliminate the components in orthogonal complement space of the eigenvalue, we shall solve a parallel preconditioned system and a Helmholtz projection system together in fine space. After one coarse space correction in each iteration and minimizing the Rayleigh quotient in a small dimensional Davidson space, we finally get the error reduction of this two-level PHJD method as $\gamma=c(H)(1-C\frac{\delta^{2}}{H^{2}})$, where $C$ is a constant independent of the mesh size $h$ and the diameter of subdomains $H$, $\delta$ is the overlapping size among the subdomains, and $c(H)$ decreasing as $H\to 0$, which means the greater the number of subdomains, the better the convergence rate. Numerical results supporting our theory shall be given.
翻译:在本文中,根据域分解(DD)方法,我们将提出一种高效的双级先决条件Helmholtz-Jacobi-Davidson(PHJD)方法,以解决由于Maxwell egenvaly问题的边缘元素近似值而导致的代谢元值问题。为了消除在egenvaly的正方形补充空间中的部件,我们将在细小空间中解决一个平行的系统与Helmholtz投影系统。在每次试入一次粗略的空间校正和在小型Davidson空间中将Rayleigh商数最小化后,我们最终将PHJD的双级方法的误差减为$\gamma=c(H)(1-C\frac=delç ⁇ 2H ⁇ 2 ⁇ )美元。 $C$是恒定的中间值大小为$hh和abmaine $的直径。美元是子域的重叠大小,美元和美元(H) 和美元(H) 将支持我们的理论的更接近率降低。