Incremental learning (IL) is essential to realize the human-level intelligence in the neural network. However, existing IL scenarios and datasets are unqualified for assessing forgetting in PLMs, giving an illusion that PLMs do not suffer from catastrophic forgetting. To this end, we propose a challenging IL scenario called instance-incremental learning (IIL) and a novel dataset called Concept-1K, which supports an order of magnitude larger IL steps. Based on the experiments on Concept-1K, we reveal that billion-parameter PLMs still suffer from catastrophic forgetting, and the forgetting is affected by both model scale, pretraining, and buffer size. Furthermore, existing IL methods and a popular finetuning technique, LoRA, fail to achieve satisfactory performance. Our study provides a novel scenario for future studies to explore the catastrophic forgetting of PLMs and encourage more powerful techniques to be designed for alleviating the forgetting in PLMs. The data, code and scripts are publicly available at https://github.com/zzz47zzz/codebase-for-incremental-learning-with-llm.
翻译:暂无翻译