Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data. However, these models also display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of ``decision shortcuts'' that hinder their generalization capabilities. In this work, we find that the CLIP model possesses a rich set of features, encompassing both \textit{desired invariant causal features} and \textit{undesired decision shortcuts}. Moreover, the underperformance of CLIP on downstream tasks originates from its inability to effectively utilize pre-trained features in accordance with specific task requirements. To address this challenge, we propose a simple yet effective method, Spurious Feature Eraser (SEraser), to alleviate the decision shortcuts by erasing the spurious features. Specifically, we introduce a test-time prompt tuning paradigm that optimizes a learnable prompt, thereby compelling the model to exploit invariant features while disregarding decision shortcuts during the inference phase. The proposed method effectively alleviates excessive dependence on potentially misleading spurious information. We conduct comparative analysis of the proposed method against various approaches which validates the significant superiority.
翻译:暂无翻译