Semantic segmentation is important for scene understanding. To address the scenes of adverse illumination conditions of natural images, thermal infrared (TIR) images are introduced. Most existing RGB-T semantic segmentation methods follow three cross-modal fusion paradigms, i.e. encoder fusion, decoder fusion, and feature fusion. Some methods, unfortunately, ignore the properties of RGB and TIR features or the properties of features at different levels. In this paper, we propose a novel feature fusion-based network for RGB-T semantic segmentation, named \emph{LASNet}, which follows three steps of location, activation, and sharpening. The highlight of LASNet is that we fully consider the characteristics of cross-modal features at different levels, and accordingly propose three specific modules for better segmentation. Concretely, we propose a Collaborative Location Module (CLM) for high-level semantic features, aiming to locate all potential objects. We propose a Complementary Activation Module for middle-level features, aiming to activate exact regions of different objects. We propose an Edge Sharpening Module (ESM) for low-level texture features, aiming to sharpen the edges of objects. Furthermore, in the training phase, we attach a location supervision and an edge supervision after CLM and ESM, respectively, and impose two semantic supervisions in the decoder part to facilitate network convergence. Experimental results on two public datasets demonstrate that the superiority of our LASNet over relevant state-of-the-art methods. The code and results of our method are available at https://github.com/MathLee/LASNet.
翻译:语义分解对于现场理解很重要。 为了处理自然图像的负面光化条件的场景, 引入了热红外线( TIR) 图像。 多数现有的 RGB- T 语义分解方法遵循三种跨模式融合模式, 即 编码融合、 解码融合和 特性融合。 某些方法, 不幸的是, 忽略了 RGB 和 TIR 特性的属性或不同级别特征的属性 。 在本文中, 我们为 RGB- T 语义分解( named emph{ LASNet}) 提出了一个基于新颖的聚合网络集成网络网络网络网络网络网络网络网络, 遵循定位、 激活和精细化三个步骤 。 我们建议, 充分考虑不同级别跨模式特性的特性, 并因此提出更好的分解模式。 我们建议, 高层次的语义设置一个合作定位模块( CLM), 对所有潜在物体进行定位。 我们提议为中级特性设置一个补充动作模块, 旨在激活不同物体的精确区域,, 升级的 CMA 数据级 。