Photonic Crystal Fiber design based on surface plasmon resonance phenomenon (PCF SPR) is optimized before it is fabricated for a particular application. An artificial intelligence algorithm is evaluated here to increase the ease of the simulation process for common users. COMSOL MultiPhysics is used. The algorithm suggests best among eight standard machine learning and one deep learning model to automatically select the desired mode, chosen visually by the experts otherwise. Total seven performance indices: namely Precision, Recall, Accuracy, F1-Score, Specificity, Matthew correlation coefficient, are utilized to make the optimal decision. Robustness towards variations in sensor geometry design is also considered as an optimal parameter. Several PCF-SPR based Photonic sensor designs are tested, and a large range optimal (based on phase matching) design is proposed. For this design algorithm has selected Support Vector Machine (SVM) as the best option with an accuracy of 96%, F1-Score is 95.83%, and MCC of 92.30%. The average sensitivity of the proposed sensor design with respect to change in refractive index (1.37-1.41) is 5500 nm/RIU. Resolution is 2.0498x10^(-5) RIU^(-1). The algorithm can be integrated into commercial software as an add-on or as a module in academic codes. The proposed novel step has saved approximately 75 minutes in the overall design process. The present work is equally applicable for mode selection of sensor other than PCF-SPR sensing geometries.


翻译:光晶光晶纤维设计基于表面晶体共振现象(PCF SPR) 的光晶纤维设计在为特定应用程序制造之前是优化的。在这里,对人工智能算法进行了评估,以提高普通用户模拟过程的便捷性。使用了 COMSOL 多重物理学。 算法在八种标准机器学习和一种深学习模型中提出了最佳的建议,以自动选择理想模式,专家通过视觉另选。 总共七个性能指数(即精度、回调、准确度、F1-Score、F1-Score、F1-Scricity、Matthew 相关系数)被用来做出最佳决定。 对传感器几处几处几处几处测深相仪设计也被视为最佳参数。 几个基于光子传感器设计的 PCFCF-SPR 模型设计,以及一个大范围范围的最佳范围(以相匹配为基础) 。 对于这个设计算法,96%的精度, F1-Screcrecure is 95.83%, 和 MCMCFleal 30%。 的拟议传感器设计与当前Refrefresmial Exlistreval 格式格式的变换的精度设计(Ialal 10-listralalalalalalal ormax) 10-lishal ormaislal 10-liformax 10) 的精度平均平均平均平均的精度设计,其平均敏感度设计设计设计为nal is mal is mal is n.

0
下载
关闭预览

相关内容

【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
62+阅读 · 2021年4月23日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
7+阅读 · 2019年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年9月10日
Learning to Importance Sample in Primary Sample Space
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
7+阅读 · 2019年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员