We present PEARL (Peer-Enhanced Adaptive Radio via On-Device LLM), a framework for cooperative cross-layer optimization in device-to-device (D2D) communication. Building on our previous work on single-device on-device LLMs, PEARL extends the paradigm by leveraging both publisher and subscriber states to guide Wi-Fi Aware (WA) parameter selection. A context-aware reward, which normalizes latency by application tolerances and modulates energy by device battery states, provides richer supervision for KL-based finetuning. We study two lightweight variants: PEARL (Head + Low-Rank Adaptation (LoRA)) achieves the best overall performance, while PEARL-Lite (Head-only) delivers sub-20 ms inference at near-identical objective scores. Across synthetic scenarios grounded in real measurements, PEARL improves objective scores over heuristic and compact model baselines and reduces energy by up to 16% in cooperative low-battery cases. These results demonstrate that peer-aware context, reward-aligned training, and head-based efficiency make LLMs practical for always-on, on-device cross-layer control. Code, real-world demo, and dataset are available at https://github.com/abman23/pearl


翻译:本文提出PEARL(基于设备端大语言模型的同伴增强自适应无线电)框架,用于实现设备间(D2D)通信的协同跨层优化。基于我们先前在单设备端大语言模型(LLM)上的研究工作,PEARL通过同时利用发布者和订阅者状态来指导Wi-Fi Aware(WA)参数选择,从而扩展了该范式。一种上下文感知的奖励机制——通过应用容忍度对延迟进行归一化,并根据设备电池状态调整能耗——为基于KL散度的微调提供了更丰富的监督信号。我们研究了两种轻量级变体:PEARL(头部+低秩适应(LoRA))实现了最佳整体性能,而PEARL-Lite(仅头部)在目标分数几乎相同的情况下实现了低于20毫秒的推理延迟。在基于真实测量数据的合成场景中,PEARL相比启发式和紧凑模型基线提高了目标分数,并在协作低电量场景下将能耗降低了高达16%。这些结果表明,同伴感知的上下文、奖励对齐的训练以及基于头部的效率设计,使得大语言模型能够实际应用于持续运行的设备端跨层控制。代码、真实世界演示及数据集可在https://github.com/abman23/pearl获取。

0
下载
关闭预览

相关内容

大语言模型是基于海量文本数据训练的深度学习模型。它不仅能够生成自然语言文本,还能够深入理解文本含义,处理各种自然语言任务,如文本摘要、问答、翻译等。2023年,大语言模型及其在人工智能领域的应用已成为全球科技研究的热点,其在规模上的增长尤为引人注目,参数量已从最初的十几亿跃升到如今的一万亿。参数量的提升使得模型能够更加精细地捕捉人类语言微妙之处,更加深入地理解人类语言的复杂性。在过去的一年里,大语言模型在吸纳新知识、分解复杂任务以及图文对齐等多方面都有显著提升。随着技术的不断成熟,它将不断拓展其应用范围,为人类提供更加智能化和个性化的服务,进一步改善人们的生活和生产方式。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年11月1日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2021年11月1日
Arxiv
10+阅读 · 2018年2月17日
Arxiv
12+阅读 · 2018年1月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员