We study several variants of a combinatorial game which is based on Cantor's diagonal argument. The game is between two players called Kronecker and Cantor. The names of the players are motivated by the known fact that Leopold Kronecker did not appreciate Georg Cantor's arguments about the infinite, and even referred to him as a "scientific charlatan". In the game Kronecker maintains a list of m binary vectors, each of length n, and Cantor's goal is to produce a new binary vector which is different from each of Kronecker's vectors, or prove that no such vector exists. Cantor does not see Kronecker's vectors but he is allowed to ask queries of the form"What is bit number j of vector number i?" What is the minimal number of queries with which Cantor can achieve his goal? How much better can Cantor do if he is allowed to pick his queries \emph{adaptively}, based on Kronecker's previous replies? The case when m=n is solved by diagonalization using n (non-adaptive) queries. We study this game more generally, and prove an optimal bound in the adaptive case and nearly tight upper and lower bounds in the non-adaptive case.


翻译:我们根据康托尔的对角参数研究了组合式游戏的几种变体。 游戏是在两个玩家之间, 叫做克朗克尔和坎托。 玩家的名字的动机是已知的事实, 利奥波尔德· 克罗内克尔不欣赏乔治·坎托尔关于无限的争论, 甚至称他为“ 科学的骗术 ” 。 在游戏中, 克罗内克尔保留了一个 m 双向矢量列表, 每个长度的 n, 坎托尔的目标是产生一个新的双向矢量, 与克朗克尔的向量不同, 或者证明不存在新的向量。 玩家的名字的动机是已知的事实, 利奥波尔德· 克罗内克尔不欣赏Georg Cantor关于无限无限的争论, 但允许他询问“ 乔治·坎托尔关于无限无限的争论 ” 。 在 Krondeker 的先前的回答中, 允许坎托尔以 Kron- propptial 来选择他的询问, 如何更好呢? 当M=n- daldaldaldalizen 案例研究中, 并用最优化的硬化的硬化的硬化 和硬化的硬化 来解决这个案子时,?

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
83+阅读 · 2022年7月16日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
93+阅读 · 2021年5月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月9日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
83+阅读 · 2022年7月16日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
93+阅读 · 2021年5月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员