In randomized trials with continuous-valued outcomes the goal is often to estimate the difference in average outcomes between two treatment groups. However, the outcome in some trials is longitudinal, meaning that multiple measurements of the same outcome are taken over time for each subject. The target of inference in this case is often still the difference in averages at a given timepoint. One way to analyze these data is to ignore the measurements at intermediate timepoints and proceed with a standard covariate-adjusted analysis (e.g. ANCOVA) with the complete cases. However, it is generally thought that exploiting information from intermediate timepoints using mixed models for repeated measures (MMRM) a) increases power and b) more naturally "handles" missing data. Here we prove that neither of these conclusions is entirely correct when baseline covariates are adjusted for without including time-by-covariate interactions. We back these claims up with simulations. MMRM provides benefits over complete-cases ANCOVA in many cases, but covariate-time interaction terms should always be included to guarantee the best results.


翻译:在连续评估结果的随机试验中,目标往往是估计两个治疗组之间平均结果的差别,然而,有些试验的结果是纵向的,意味着对同一结果的多重测量是随时间推移而来的。本案的推断目标往往仍然是某一时间点的平均差别。分析这些数据的方法之一是忽略中间时间点的测量结果,对全部案例进行标准的共变调整分析(如ANCOVA)。然而,一般认为利用中间时间点的信息,使用混合模式来重复测量(MMRM) a),增加功率和b)更自然地“手动”缺失的数据。我们在这里证明,当基线共变换调整时没有包括逐个时间的相互作用时,这些结论都没有完全正确。我们用模拟来支持这些主张。MURM为许多案例提供了全例ANCOVA的效益,但共变时间互动术语应该始终包括来保证最佳结果。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
1+阅读 · 2021年10月12日
Arxiv
6+阅读 · 2018年2月28日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员