The Supervisory control and data acquisition (SCADA) systems have been continuously leveraging the evolution of network architecture, communication protocols, next-generation communication techniques (5G, 6G, Wi-Fi 6), and the internet of things (IoT). However, SCADA system has become the most profitable and alluring target for ransomware attackers. This paper proposes the deep learning-based novel ransomware detection framework in the SCADA controlled electric vehicle charging station (EVCS) with the performance analysis of three deep learning algorithms, namely deep neural network (DNN), 1D convolution neural network (CNN), and long short-term memory (LSTM) recurrent neural network. All three-deep learning-based simulated frameworks achieve around 97% average accuracy (ACC), more than 98% of the average area under the curve (AUC), and an average F1-score under 10-fold stratified cross-validation with an average false alarm rate (FAR) less than 1.88%. Ransomware driven distributed denial of service (DDoS) attack tends to shift the SOC profile by exceeding the SOC control thresholds. The severity has been found to increase as the attack progress and penetration increases. Also, ransomware driven false data injection (FDI) attack has the potential to damage the entire BES or physical system by manipulating the SOC control thresholds. It's a design choice and optimization issue that a deep learning algorithm can deploy based on the tradeoffs between performance metrics.
翻译:监督控制和数据获取系统一直在不断利用网络架构、通信协议、下一代通信技术(5G、6G、W-Fi 6)和互联网(IoT)的演变,利用网络架构、通信协议、下一代通信技术(5G、6G、Wi-Fi 6)和互联网(IoT)的演变。然而,SCAD系统已成为赎金软件袭击者最有利和最具诱惑力的目标,但SASADA系统已成为赎金软件袭击者最有利和最具诱惑力的目标。本文件提议在SCADA控制的电动车辆充电器充电器充电站(EVCSEC)中采用基于深神经网络(DNNNN)、1D Convoluction 神经网络(NNNNNNN)和长短期内存(LSTM)经常神经网络(NLSTM),以及长期短期内存储器(LSTM) 经常神经网络(NLSTM), 所有三个深层学习模拟模拟模拟模拟模拟框架的模拟框架达到平均97%左右(AC),超过曲线下的平均面积面积(ARC 以及10级交叉校的FDRDR)下的平均FD,其平均部署、平均部署、平均部署、可增加SLFDRDRDRD、可能增加SIM、部署、部署、累压、累积、可增加SDFDRFD、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累、累