We propose models and algorithms for learning about random directions in two-dimensional simplex data, and apply our methods to the study of income level proportions and their changes over time in a geostatistical area. There are several notable challenges in the analysis of simplex-valued data: the measurements must respect the simplex constraint and the changes exhibit spatiotemporal smoothness while allowing for possible heterogeneous behaviors. To that end, we propose Bayesian models that rely on and expand upon building blocks in circular and spatial statistics by exploiting suitable transformation based on the polar coordinates for circular data. Our models also account for spatial correlation across locations in the simplex and the heterogeneous patterns via mixture modeling. We describe some properties of the models and model fitting via MCMC techniques. Our models and methods are illustrated via a thorough simulation study, and applied to an analysis of movements and trends of income categories using the Home Mortgage Disclosure Act data.
翻译:我们提出了用于在二维简单数据中了解随机方向的模型和算法,并运用我们的方法研究收入水平比例及其随时间推移在地理统计学领域的变化。在分析简单x价值数据方面有若干显著的挑战:测量必须尊重简单x限制和变化表现出时空平稳,同时允许可能的多种行为。为此,我们提出了巴耶斯模式,这些模型依靠和扩展循环和空间统计中的构件,利用圆形数据极坐标进行适当转换。我们的模型还说明了简单x各地点之间的空间相关性,以及通过混合模型模型的混合模式。我们描述了模型的某些特性,并通过MCMCC技术加以调整。我们的模式和方法通过彻底的模拟研究加以说明,并用于利用家庭抵押披露法数据分析收入类别的变化和趋势。